How serial Flash technology is evolving to meet the new requirements of Industry 4.0 designs


By Alex Wei, Winbond Electronics


The famous fourth industrial revolution, tagged ‘Industry 4.0’, is based on the move to digitize industrial equipment and processes on a massive scale. This Industry 4.0 trend is now stretching the capabilities of almost every important category of electronic component used in industrial machines and systems.

Non-volatile memory is no exception. Non-volatile memory is being challenged to meet new requirements in Industry 4.0 designs in five main ways:

  • Cost
  • Size
  • Speed
  • Power consumption
  • Security

While various alternative non-volatile memory technologies continue to put up a challenge, it is proven, familiar Flash technology which is evolving fastest and most effectively to meet these new challenges. This article describes recent innovations in Flash memory products which will help system designers implement new equipment designs for Industry 4.0 applications.

 

The demands of Industry 4.0

Industry 4.0 is defined by business consultancy McKinsey as: ‘The next phase in the digitization of the manufacturing sector, driven by four disruptions: the astonishing rise in data volumes, computational power and connectivity, especially new low-power wide-area networks (LPWANs); the emergence of analytics and business intelligence capabilities; new forms of human-machine interaction such as touch interfaces and augmented reality (AR) systems; and improvements in transferring digital instructions to the physical world, such as advanced robotics and 3D printing.’

Industry 4.0 equipment is notable for its extensive generation and use of ‘big data’, facilitated by always-on, pervasive connectivity to the internet. As LPWANs proliferate in factories, warehouses and industrial campuses, the supply chain will increasingly be able to share real-time monitoring data about products, inventory and assets with sophisticated analytics software in the cloud.

Underpinning this explosion of digitization will be the massively increased deployment of sensing devices, such as RFID smart tags which can be read wirelessly. These devices, operating from a battery power supply or even from harvested energy, will often require an ultra-low power memory component for storing logged data.

A completely different challenge will be posed by new control technologies for industrial equipment. For all the hype around today’s testing of autonomous vehicles on public roads, it is in factories and warehouses, which stand to gain huge efficiency and safety benefits from the elimination of human drivers, that autonomous vehicles such as fork-lift trucks and motorized trolleys are being first deployed (see Figure 1).

Fig. 1: the autonomous Linde R-MATIC reach truck transports palletized goods of up to 1.6 tons fully automatically to high-bay racks. (Image credit: Linde)

Similarly, AR and virtual reality (VR) are best known as consumer technologies, but again offer huge potential value in the factory, for instance to assist in manual assembly, maintenance or repair operations.

New implementations of these sophisticated applications will run on vast application code bases, far greater than is typical for today’s industrial appliances. This will bring pressure on industrial system designers to find code storage solutions which meet the hugely increased capacity requirement without a similarly huge increase in bill-of-materials cost and board footprint.

Lastly, a common theme in all types of Industry 4.0 equipment is connectivity – and connectivity brings an inherent risk of compromised security. By guaranteeing the authenticity of the devices that store code and data in Industry 4.0 equipment, secure non-volatile memory chips can provide a hardware barrier to intrusion into sensitive industrial networks.

 

Evolution of Flash technology for the Industry 4.0 age

Over the years, various non-volatile memory technologies have made claim to superiority over Flash in one characteristic or another. But as the incumbent, pre-eminent technology for non-volatile storage, Flash has the advantages of being:

  • Familiar
  • Proven in tens of thousands of applications
  • Available in large volumes in a very wide choice of product configurations, to give a flexible set of product options for the system designer to choose from
  • Backed by the resources of the world’s leading memory IC manufacturers, including Winbond. These manufacturers continually invest in improvements to fundamental Flash fabrication technology, packaging, and device performance and features.

Now, Flash product manufacturers are responding quickly and effectively to meet the new memory requirements of manufacturers of Industry 4.0 equipment and systems, introducing new solutions optimized for cost, size, performance, power or security.

 

Packaging innovations

The semiconductor industry's favored method for achieving size and cost reduction is the process shrink. For the high-end microcontrollers used in Industry 4.0 equipment, this is true of the CPU circuitry. Many manufacturers of leading-edge MCUs today are looking to migrate designs from 4xnm nodes to 3xnm nodes to benefit from performance and cost improvements. At 3xnm nodes, however, the NOR Flash circuitry embedded in the MCU die actually becomes more expensive – shrinking NOR Flash beyond 4xnm nodes is proving to be problematic. But Winbond is innovating in partnership with MCU manufacturers to provide stacked die solutions, combining an MCU die fabricated in a 3xnm process with a 4xnm NOR Flash die in a single package, and providing the optimal combination of footprint, performance and code storage capacity for high-end industrial designs.

 

Power innovation

Wireless smart tags or labels are increasingly being used in industrial applications to provide real-time monitoring data, for instance to continually record the temperature and humidity conditions in which perishable goods or pharmaceuticals are kept when in transit. They require the capability to store potentially large amounts of logged data, but operate from extremely constrained battery power supplies, or even from harvested energy.

To support the use of very low-voltage battery or harvested power supplies, discrete Flash ICs are being developed which operate at a voltage below the standard 1.8V low-power level for external Flash ICs. For instance, Winbond supplies the W25QxxNE 1.2V and W25QxxND extended 1.5V SpiFlash NOR Flash parts in 8-pin packages (see Figure 2). The devices offer a maximum 52MB/s data transfer rate and support a standard, dual and quad Serial Peripheral Interface (SPI) and Quad Peripheral Interface (QPI).

 
Fig. 2: the Winbond 8Mbit 25Q80NEXIG 1.2V Flash IC in a 2mm x 3mm USON8 package. (Image credit: Winbond)

 

Performance innovation

SPI NOR and serial NAND Flash are core technologies in the industrial sector, providing compact, low pin-count solutions for code and data storage. But the conventional serial architecture of these devices can act as a limiting factor on the speed with which data can be read and written, producing a slower data transfer rate than equivalent parallel Flash parts.  

Now Winbond is innovating with new high-performance serial NAND Flash technology. Single-level cell (SLC) NAND Flash provides a high-reliability data storage medium in industrial applications. But in applications which require a high data transfer rate, designers have traditionally used NOR Flash, which offers lower density and hence a higher cost-per-bit than NAND Flash, but higher speed.

Now Winbond has introduced the W25N01JW, a 1Gbit serial NAND Flash part which offers a maximum data transfer rate of 83MB/s - comparable with that of SPI NOR Flash devices. Even more impressively, the Winbond architecture supports an octo configuration - a two-chip dual quad serial interface which doubles the data transfer rate to a maximum of 166MB/s (see Figure 3).

This is sufficient to support demanding, data-rich graphics applications, providing a high-capacity, low-cost alternative to NOR Flash in densities of more than 512Mbits. Automotive-qualified, the W25N01JW is in development in vehicle instrument cluster systems, and is equally suitable for industrial autonomous vehicles and AR/VR applications.


 

Fig. 3: the dual quad architecture of the W25N01JW serial NAND Flash device. (Image credit: Winbond)

 

Security innovations

The pervasive connectivity of the Industry 4.0 world exposes equipment to risks from malicious actors intruding into networks, compromising users' privacy or stealing data. There are many measures available to designers to combat security risks. One important measure is hardware authentication, to guarantee that only authorized devices share data over a network.

To provide hardware authentication for critical software such as boot code, Winbond has introduced the W74M family of Authentication Flash Memory solutions. Each W74M part incorporates an SPI Flash memory with a security IC in a multi-chip module. The device is secured with a standard HMAC-SHA-256 crypto accelerator and four monotonic Flash counters which are HMAC-signed by individual secret keys. The W74M enables system designers to implement multi-layered authentication for code and data storage for devices on the network edge or outside the cloud.

Access to the code or data stored in the Authentication Flash memory is protected by a secure key, which is unique to each manufactured unit. In the event of tampering or intrusion into the network, the boot code or data stored on an Authentication Flash will remain secure from attempts to steal, modify or impair it.

 

Flash technology evolves to meet Industry 4.0 requirements

Non-volatile storage of code and data is one of many functional elements in industrial equipment, and as the Industry 4.0 trend towards ever greater digitization and data analytics gathers speed, the demand for higher non-volatile memory capacity, higher speed, lower power and lower cost will also intensify.

As this article has demonstrated, new product developments in the SPI NOR and serial Flash categories are helping to ensure that Flash technology retains its place as the favored non-volatile memory choice for designers of industrial equipment as they adapt to the Industry 4.0 era.

 

Please kindly contact us if you have any question mkt_online@winbond.com


Related


Slimming program for medical operating devices

Operating devices in the medical sector are not only subject to strict controls and requirements. Nowadays design demands are becoming more and more important for developers of medical HMI devices. De...

Establishing a root of trust to secure the IoT

Security is not something that any developer can ignore. It is no longer safe, for the OEM or their customers, to assume that their product or service is immune to cyber attacks. The sheer size of the...

Securing the smart and connected home

With the Internet of Things and Smart Home technologies, more and more devices are becoming connected and therefore can potentially become entry points for attackers to break into the system to steal,...

 

Perfect Motion Control For the Networked World

We live in a physical world where everything is connected. Trinamic transforms digital information into physical motion with accessible, flexible, and easy to use toolkits putting the world’s be...


New High-Performance Serial NAND: A Better High-Density Storage Option for Automotive Display

The automotive requirements: speed, reliability and compatibility. Winbond's high-performance serial NAND Flash technology offers both cost and performance advantages over the SPI NOR Flash typica...


President Tung-Yi talks about Winbond

Winbond is a leading specialty memory solution provider with a wide rage of product portfolio. Owned technology and innovation are our assets for our industry and our customers. Winbond we are high qu...


New Memory and Security Technologies for Designers of IoT Devices

Internet of Things (IoT) edge nodes are battery-powered, often portable, and are connected to an internet gateway or access point wirelessly. This means that the most important constraints on new I...


Winbond TrustMe Secure Flash - A Robust and Certifiable Secure Storage Solution

Winbond has introduced the TrustMe secure flash products to address the challenge of combining security with advanced process nodes and remove the barriers for adding secure non-volatile storage to pr...


Ultra-Low-Power DRAM: A “Green” Memory in IoT Devices

Winbond is offering a new way to extend the power savings available from Partial Array Self-Refresh (PASR), which was already specified in the JEDEC standard by implementing a new Deep Self-Refresh (D...


Polytronics Thermal Conductive Board (TCB) at Electronica 2018

This video introduce the basic product structure, advantage, and application of Polytronics thermal conductive board (TCB). Polytronics exhibit wide range of circuit protection products and thermal ma...


Arrow and Analog Devices strategic partnership and collaborative approach to provide solutions for our customers.

Mike Britchfield (VP for EMEA Sales) talks about why Analog Devices have a collaborative approach with Arrow Arrow’s design resources are key, from regional FAEs in the field to online des...


WE MAKE IT YOURS! Garz & Fricke to present the latest HMIs and SBCs at Electronica 2018

Sascha Ulrich, Head of Sales at Garz & Fricke, gives you a quick overview about the latest SBC, HMI and Panel-PC Highlights at electronica 2018. Learn more about the SANTOKA 15.6 Outdoor HMI, the ...


Macronix Innovations at electronica 2018

Macronix exhibited at electronica 2018 to showcase its latest innovations: 3D NAND, ArmorFlash secure memory, Ultra Low Vcc memory, and the NVM solutions with supreme quality mainly focusing on Automo...


ams CEO talks about their sensor solutions that define the mega trends of the future

In this video Alexander Everke, ams’ CEO, talks to Alix Paultre of EETimes about their optical, imaging and audio sensor solutions in fast-growing markets – from smartphones, mobile device...


Intel accelerated IoT Solutions by Arrow

Arrow is showing Intel’s Market Ready Solutions in a Retailer shop with complete eco environment. From sensors via gateways into the cloud, combined with data analytics, the full range of Intel ...


CSTAR - Manufacturers of cable assembly from Taiwan

CSTAR was founded in 2010 in Taipei, Taiwan. Through years of experience, we are experts in automotive products, LCD displays, LCD TVs, POS, computers, projectors, laptops, digital cameras, medical ca...


NXP Announces LPC5500 MCU Series

Check this video to discover the new NXP microcontroller LPC5500, the target application and focus area. Links to more information: LPC5500 Series: World’s First Arm® Cortex® -M...


Molex Meets Solutions at Electronica

These are exciting times in the electronics world as Molex migrates from a pure connectors company to an innovate solutions provider. Solutions often start at the component level, such as the connecto...


Alix Paultre investigates Bulgin's new optical fiber rugged connector range at Electronica 2018

Alix Paultre interviews Bulgin's Engineering Team Leader Christian Taylor to find out more about the company's new range of optical fiber connectors for harsh environments. As the smallest rug...


Cypress MCU and Connectivity are the best choice for real-world IoT solutions.

Cypress’ VP of Applications, Alan Hawse, explains why people should use Cypress for their IoT connectivity and MCU needs. Cypress wireless connectivity and MCU solutions work robustly and sea...


Chant Sincere unveils their latest High Speed/High Frequency connection solutions at Electronica 2018

Chant Sincere has been creating various of product families to provide comprehensive connection solutions to customers. USB Series Fakra Series QSFP Series Metric Connector Series Fibro ...


Addressing the energy challenge of IoT to unleash billions of devices

ON Semiconductor introduces various IoT use cases targeted towards smart homes/buildings, smart cities, industrial automation and medical applications on node-to-cloud platforms featuring ultra-low po...


ITECH, world leading manufacturer of power test instruments, shinned on electronica 2018

ITECH, as the leading power electronic instruments manufacturer, attended this show and brought abundant test solutions, such as automotive electronics, battery test, solar array simulator, and electr...


ITECH new series give users a fantastic user experience

ITECH latest series products have a first look at the electronics 2018, such as IT6000B regenerative power system, IT6000C bi-directional programmable DC power supply, IT6000D high power programmable ...


SOTB™ Process Technology - Energy Harvesting in Embedded Systems is Now a Reality

Exclusive SOTB technology from Renesas breaks the previous trade-off between achieving either low active current or low standby current consumption – previously you could only choose one. With S...


Power Integrations unveils their new motor control solution

In this video friend of the show Andy Smith of Power Integrations talks to Alix Paultre from Aspencore Media about their new BridgeSwitch ICs, which feature high- and low-side advanced FREDFETs (Fast ...


Panasonic talks about their automotive technology demonstrator

In this video Marco from Panasonic walks Alix Paultre of Aspencore Media through their automotive technology demonstrator at electronica 2018. The demonstrator highlights various vehicle subsystems an...