In Search of the Best Op Amp for Remote Devices

Portable and remote devices are integral to medical, home, and business systems that manage the collection of analog data. The trend today is to create smaller, more energy efficient devices to shrink equipment size and lengthen system battery life for performing tasks such as medical monitoring, room occupancy, or noxious gas detection.

This article identifies three portable/remote circuits which require an amplifier front-end. The task at hand will be to define the critical amplifier specifications for each circuit, to identify the best amplifier for all three applications.


Whether the portable or remote device is a medical, home, or business gadget, smaller size and lower power are becoming critical requirements for these designs (Figure 1).

Figure 1. Ultra-Mini Glucose Meters are Increasing in Capability While Shrinking in Size.

In these applications, the operational amplifier provides the critical gain and filtering functions for the sensor signal. The ideal operational amplifier that fits into these application spaces will complement these trends toward smaller size and ultra-low-power operation. For these systems there are several players in the game. So, the design challenge is to not only build in power and size enhancements, but to go beyond and find the amplifier with precisely the right specifications.

Whether sensing blood glucose level, counting occupancy numbers, or measuring the concentration level of gases, the front-end amplifier is an integral part of the entire system. The connection between the sensor’s output and the amplifier’s input terminal is a delicate juncture where the amplifier’s input characteristics dramatically affect the successful operation of the portable or remote device.

To find the optimal solution, we will discuss three systems:

  • Glucose monitor
  • Occupancy Sensor
  • Gas detector

Even though there are many brands of blood glucose test strips, each with their own technology, they all fundamentally function the same way. A two-electrode test strip is composed of several layers. As shown in Figure 2, the test strip layers channel the blood sample to a reaction center and add glucose reactant enzymes and a chemical mediator to speed-up electrons along the test strip’s interior.


Figure 2. Two-electrode, diabetes test strips capture the patient’s blood and transport it to the testing electrodes.

The bottom layer of the strip has a gold and palladium-coated trace to transfer the reaction electrons to the amplifier’s input (Figure 3). The test strip’s full-scale output current ranges from 10μA to 50μA, with a resolution less than 10nA.

Figure 3. A Single-Supply Dual Amplifier at the Front-End of the Blood Glucose Monitor

In Figure 3, the test strip output current, IS, flows through U1’s feedback resistor, RS, creating a voltage equal to RS times IS. The second amplifier (U2) implements a 5V/V gain and a 7Hz lowpass filter (RL/CL). The size of glucose monitors continues to shrink while increasing in functionality. Today these monitors provide an interface screen along with a data sync to mobile apps, a display, and data logging. Due to the battery-powered environment, these amplifiers must be nanopower-capable and housed in a small package.

These characteristics are important, but the amplifier must also have the precise characteristics that the test strip requires. The test strip’s ampere magnitude dictates the use of amplifiers with extremely low input bias current to complement the minimum 10nA resolution. The amplifier input must also have a common mode range that extends to the negative power supply as well as an output that swings rail-to-rail. A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared (IR) radiation emitted by objects in the PIR’s field of view. A home or business intrusion detector is a perfect application for the PIR sensor.

The PIR sensor produces a small millivolt signal by detecting radiated temperature changes such as those from the movement of humans. This sensor does not produce a voltage output for static incidences or temperatures. Depending on the proximity of the passing person, the PIR’s output voltage increases or decreases as the object enters or leaves the PIR’s field of vision, which happens within a 0.5Hz to 7Hz frequency range (Figure 4).

Figure 4. PIR Motion Detection Circuit Using a Dual Single-Supply Operational Amplifier

In Figure 4, the PIR’s bias DC voltage output is approximately 1V. The two amplifier stages are exact duplicates, with a gain of ~46.4 and a 0.5Hz (zero) to 7Hz (pole) second-order bandpass filter, which matches the expected frequency range of passing humans. With these two second-order bandpass filters, the DC signals, including the amplifier’s offset voltages, do not pass to the circuit output (OUT). The two second-order bandpass filters require an adequate amplifier bandwidth of 8kHz or greater.

The battery life of today’s motion detection systems is approximately one year. With future upgrades, devices with lower power consumption and smaller component sizes will be expected. Due to this battery-powered environment, the amplifiers for this solution must also be nanopower-capable and housed in a small package.

A gas detector is a device that senses the presence of gases in an area. As an example, carbon monoxide (CO) is an odorless, colorless gas produced by burning fuel. Sometimes, due to a stove, lantern, grill, or furnace, the CO’s concentration can build in the room or facility to harmful levels. The gas detector’s function is to sense the CO’s concentration level and interface with a control system that notifies the user and/or shuts down the offending system.

The gas detector front-end circuit shown in Figure 5 detects various types of gases, as determined by the gas sensor type. In Figure 5, U1 energizes the sensor with a constant DC voltage (VREF1) at the sensor reference electrode (RE). U2, configured as a transimpedance amplifier, changes the sensor output current (ISENSE) into a voltage (VOUT). The output voltage is equal to the sensor’s output current (ISENSE) times the amplifier’s feedback resistor (R3). The ISENSE polarity depends on the type of sensor. 

Figure 5. Gas Detection Circuit Using a Single-Supply Dual Operational Amplifier

Due to the transimpedance configuration, this circuit requires amplifiers with extremely low input bias currents in the picoamp range. Combined with the battery-powered environment, these amplifiers must be nanopower-capable and housed in an extremely small package.

As mentioned earlier, devices for portable and remote applications require power-conscious components in small packages while still meeting critical electrical performance specifications. The key amplifier specifications that our application circuits required were common-mode input ranges to the negative supply, rail-to-rail output swing, and ample bandwidth. An amplifier which meets the criteria for the three circuits discussed is the MAX40018, a nanoPower dual operational amplifier in a WLP package. This device consumes the lowest power with the smallest packaging in its class (Figure 6).

Figure 6. Dual Operational Amplifier Quiescent Current vs. Package Size

Figure 6 compares four dual operational amplifiers. Of the four, the bottom left dual amplifier outperforms the others with 400nA quiescent current per operational amplifier with a 1.488mm2 wafer level package (WLP) housing. The glucose meter, the occupancy sensor, and the gas meter are appropriate fits for the nanoPower, tiny dual amplifier.

Battery-powered portable and remote devices demand small, ultra-low power components. Operational amplifiers used in these applications must meet these power conditions without compromising key performance specifications. We examined how a dual nanopower operational amplifier fits directly into these requirements with ultra-low power consumption, a small chip-size package, a sub-pico ampere input bias current, and a unity gain bandwidth greater than 8kHz. Who could ask for more?


Related


Slimming program for medical operating devices

Operating devices in the medical sector are not only subject to strict controls and requirements. Nowadays design demands are becoming more and more important for developers of medical HMI devices. De...

Establishing a root of trust to secure the IoT

Security is not something that any developer can ignore. It is no longer safe, for the OEM or their customers, to assume that their product or service is immune to cyber attacks. The sheer size of the...

 

Perfect Motion Control For the Networked World

We live in a physical world where everything is connected. Trinamic transforms digital information into physical motion with accessible, flexible, and easy to use toolkits putting the world’s be...


New High-Performance Serial NAND: A Better High-Density Storage Option for Automotive Display

The automotive requirements: speed, reliability and compatibility. Winbond's high-performance serial NAND Flash technology offers both cost and performance advantages over the SPI NOR Flash typica...


President Tung-Yi talks about Winbond

Winbond is a leading specialty memory solution provider with a wide rage of product portfolio. Owned technology and innovation are our assets for our industry and our customers. Winbond we are high qu...


New Memory and Security Technologies for Designers of IoT Devices

Internet of Things (IoT) edge nodes are battery-powered, often portable, and are connected to an internet gateway or access point wirelessly. This means that the most important constraints on new I...


Winbond TrustMe Secure Flash - A Robust and Certifiable Secure Storage Solution

Winbond has introduced the TrustMe secure flash products to address the challenge of combining security with advanced process nodes and remove the barriers for adding secure non-volatile storage to pr...


Ultra-Low-Power DRAM: A “Green” Memory in IoT Devices

Winbond is offering a new way to extend the power savings available from Partial Array Self-Refresh (PASR), which was already specified in the JEDEC standard by implementing a new Deep Self-Refresh (D...


Polytronics Thermal Conductive Board (TCB) at Electronica 2018

This video introduce the basic product structure, advantage, and application of Polytronics thermal conductive board (TCB). Polytronics exhibit wide range of circuit protection products and thermal ma...


Arrow and Analog Devices strategic partnership and collaborative approach to provide solutions for our customers.

Mike Britchfield (VP for EMEA Sales) talks about why Analog Devices have a collaborative approach with Arrow Arrow’s design resources are key, from regional FAEs in the field to online des...


WE MAKE IT YOURS! Garz & Fricke to present the latest HMIs and SBCs at Electronica 2018

Sascha Ulrich, Head of Sales at Garz & Fricke, gives you a quick overview about the latest SBC, HMI and Panel-PC Highlights at electronica 2018. Learn more about the SANTOKA 15.6 Outdoor HMI, the ...


Macronix Innovations at electronica 2018

Macronix exhibited at electronica 2018 to showcase its latest innovations: 3D NAND, ArmorFlash secure memory, Ultra Low Vcc memory, and the NVM solutions with supreme quality mainly focusing on Automo...


ams CEO talks about their sensor solutions that define the mega trends of the future

In this video Alexander Everke, ams’ CEO, talks to Alix Paultre of EETimes about their optical, imaging and audio sensor solutions in fast-growing markets – from smartphones, mobile device...


Intel accelerated IoT Solutions by Arrow

Arrow is showing Intel’s Market Ready Solutions in a Retailer shop with complete eco environment. From sensors via gateways into the cloud, combined with data analytics, the full range of Intel ...


CSTAR - Manufacturers of cable assembly from Taiwan

CSTAR was founded in 2010 in Taipei, Taiwan. Through years of experience, we are experts in automotive products, LCD displays, LCD TVs, POS, computers, projectors, laptops, digital cameras, medical ca...


NXP Announces LPC5500 MCU Series

Check this video to discover the new NXP microcontroller LPC5500, the target application and focus area. Links to more information: LPC5500 Series: World’s First Arm® Cortex® -M...


Molex Meets Solutions at Electronica

These are exciting times in the electronics world as Molex migrates from a pure connectors company to an innovate solutions provider. Solutions often start at the component level, such as the connecto...


Alix Paultre investigates Bulgin's new optical fiber rugged connector range at Electronica 2018

Alix Paultre interviews Bulgin's Engineering Team Leader Christian Taylor to find out more about the company's new range of optical fiber connectors for harsh environments. As the smallest rug...


Cypress MCU and Connectivity are the best choice for real-world IoT solutions.

Cypress’ VP of Applications, Alan Hawse, explains why people should use Cypress for their IoT connectivity and MCU needs. Cypress wireless connectivity and MCU solutions work robustly and sea...


Chant Sincere unveils their latest High Speed/High Frequency connection solutions at Electronica 2018

Chant Sincere has been creating various of product families to provide comprehensive connection solutions to customers. USB Series Fakra Series QSFP Series Metric Connector Series Fibro ...


Addressing the energy challenge of IoT to unleash billions of devices

ON Semiconductor introduces various IoT use cases targeted towards smart homes/buildings, smart cities, industrial automation and medical applications on node-to-cloud platforms featuring ultra-low po...


ITECH, world leading manufacturer of power test instruments, shinned on electronica 2018

ITECH, as the leading power electronic instruments manufacturer, attended this show and brought abundant test solutions, such as automotive electronics, battery test, solar array simulator, and electr...


ITECH new series give users a fantastic user experience

ITECH latest series products have a first look at the electronics 2018, such as IT6000B regenerative power system, IT6000C bi-directional programmable DC power supply, IT6000D high power programmable ...


SOTB™ Process Technology - Energy Harvesting in Embedded Systems is Now a Reality

Exclusive SOTB technology from Renesas breaks the previous trade-off between achieving either low active current or low standby current consumption – previously you could only choose one. With S...


Power Integrations unveils their new motor control solution

In this video friend of the show Andy Smith of Power Integrations talks to Alix Paultre from Aspencore Media about their new BridgeSwitch ICs, which feature high- and low-side advanced FREDFETs (Fast ...


Panasonic talks about their automotive technology demonstrator

In this video Marco from Panasonic walks Alix Paultre of Aspencore Media through their automotive technology demonstrator at electronica 2018. The demonstrator highlights various vehicle subsystems an...